Creative Destruction

Florian Pestoni

Creative destruction. Sounds cool, doesn’t it? If you’re picturing a demolition derby with decorated cars driven by artists and designers… that’s not it at all.

The gale of creative destruction was first introduced by economist Joseph Shumpeter in 1942, to describe the “process of industrial mutation that incessantly revolutionizes the economic structure from within, incessantly destroying the old one, incessantly creating a new one”.

Read more

InOrbit 2020 Vision

Florian Pestoni

The start of a decade is always a good excuse for predictions. After all, who’s going to remember 10 years later if you were right? For us at InOrbit, we are setting a goal and making a prediction that will determine the fate of our company and the broader robotics industry. We fully expect to be held accountable to it.

We recently got together as a team to work on our 2020 Vision (yes, pun fully intended) to guide us through the decade we are just kicking off. As part of this we have committed all our energy and passion behind a BHAG: a big, hairy and audacious goal. If you are not familiar with the concept of BHAG (pronounced “bee hag”), it’s a term popularized by Jim Collins, of Good to Great fame, to capture a simple goal that help align a whole organization.

Read more

ROScon 2019

Florian Pestoni

Last week InOrbit was at ROScon, one of the most important technical conferences in robotics. It was great to see a growing and very engaged community tackle a wide variety of topics. Most of the energy in recent years has been around ROS2, and this year it was clear that it’s really happening. You could find robots on the exhibit floor running ROS2, and most of the talks tackled new capabilities in ROS2.

We noticed another, perhaps more significant change: there was a significant uptick in the number of talks and discussions regarding scalability of operations in the field and interoperability across robots. As ROS adoption is growing, attention is shifting towards managing hundreds or thousands of robots outside the lab.

The opening keynote set the tone. Selina Seah, Director of the Centre for Healthcare Assistive & Robotics Technology (CHART) at Changi General Hospital, and Morgan Quigley, Chief Architect at Open Robotics, presented their ongoing work to coordinate navigation of heterogeneous robotic fleets and more broadly addressing the need for interoperability of complex and disparate technological systems with HIT and infrastructure.

Our very own CTO/co-founder, Julian Cerruti, and one of the engineers on the InOrbit team, Florencia Grosso, presented some lessons learned working with robotics companies to deploy and operate fleets of ROS-based autonomous robots in production. Several other presentations mentioned fleet management, and the excellent panel on ROS at Scale delved into the details of how to handle large systems of robots in production settings.

Read more

RoboBusiness 2019 Recap

Florian Pestoni

The InOrbit team recently had a chance to showcase Mission Control, our cloud-based robot management platform, at RoboBusiness. This event has become one of the most important in the industry, attracting the most innovative robotics companies as well as a business audience hungry for technology to help tackle some of the hardest problems across different industries.

We had a really busy week, including co-organizing the first face-to-face meeting of the Robot Operations Working Group, presenting on stage in front of +100 people at Pitchfire, and moderating a panel on Best Practices for Robotics Operations at Scale, with great panelists from Brain Corp, Qualcomm and Service Robotics & Technologies.

Read more

InOrbit and Qualcomm Robotics RB3 platform

Florian Pestoni

Our goal is to put every robot in orbit around the cloud to help accelerate the adoption of robotics across industries. Today we are one important step closer to that goal.

At RoboBusiness, the premier commercial robotics trade show for business executives, we announced that the Qualcomm® Robotics RB3 development kit will have pre-integrated support for InOrbit’s cloud platform. This advanced development kit is based on the powerful Qualcomm SDA845 SoC. This allows robotics developers to create autonomous robots for the most challenging applications.

Read more

Bridging the Autonomy Gap - Part 2

Florian Pestoni

In Part 1 of this article, we discussed in some detail some of the limitations of AI and autonomous systems. The key takeaway is that autonomy is relative, and there continues to be a need for human interaction and direction.

At InOrbit, we are harnessing the power of the cloud and the edge to bring automation and efficiency to the operation of distributed robot fleets. It consists of four O’s, which of course we think of as concentric orbits.

Read more

Cobble together no more

Florian Pestoni

Imagine that you need to fly to a distant location, a busy airport you’ve never visited. You are the nervous kind, so you want to make sure it will be safe. You talk to the airplane manufacturer, and walk away with confidence that the machine has been well designed. You verify the maintenance schedule and are satisfied that it is thoroughly tested.

Then you talk to the management at the airport you’re flying into, and they tell you that they cobbled together their air traffic control system with some old PCs that nobody was using and installed some software for a taxi dispatch. Would you get on that plane?

Sadly, this is often the case in robotics. Since before we started InOrbit, and throughout the last 2 years, we have engaged with over 75 robotics companies and hundreds of people in the robotics space. We have talked to the C-suite setting strategy and to front line operators doing triage, to robotics Ph.D.’s and to self-identified robot baby-sitters. Across all these conversations, we had an overarching question: how do you manage robots after they leave the lab?

Read more

Bridging the Autonomy Gap - Part 1

Florian Pestoni

Robots are everywhere. They can be found in hospitals and hotels. In farms and construction sites. Brick and mortar retailers and e-commerce distribution centers. In the air, in the sea, on the ground and even underground, as we saw recently in the DARPA challenge.

But what is a robot? There have been plenty of philosophical discussions on this, and probably no shortage of flame wars. We like this definition from IEEE:

A robot is an autonomous machine capable of sensing its environment,
carrying out computations to make decisions, and performing actions
in the real world.

So right there in the definition is the A-word: autonomy. Since nomos is Greek for “law”, something autonomous makes its own laws. Pretty cool, right?

However, autonomy is relative. We’re not just talking about being constrained by the laws of physics, but by the limits of AI, sensing technology, computing power, servos, etc. In essence, the guts and brains of robots can only go so far with current technology.

Read more

One giant leap for robotkind

Florian Pestoni

50 years ago this month, the first human set foot on the moon (unless you choose to believe it never happened.) At InOrbit, we work on scaling autonomous solutions, not spaceships, but this milestone got us thinking about what the next 50 years may have in store for us, and the impact of automation.

As I’ve shared here before, we do 3-4 big product pushes per year and give them a codename based on some of the greatest inventors and scientists. It seems appropriate that for our next one, which will be starting soon, we would pick Margaret Hamilton.

While the picture of Neil Armstrong’s first footprint on the moon has been repeated over and over, it’s not as often that we hear about all the people who made that possible. Hamilton led the software development efforts for Apollo 11; she was the first person to use the term “software engineering”. She was awarded the Medal of Freedom in 2016. If you’d like to learn more about Margaret Hamilton, there’s a great profile on Makers.com.

Read more

Biggest gaps in robot operations

Florian Pestoni

Over the last year, we have been talking with robotics companies and operators in Silicon Valley and around the world. We have learned a few things about the challenges of operating robots at scale. This has mostly confirmed that, compared to the great advances in software and hardware components that are helping robots enter every industry, robot operations and infrastructure are still immature.

Read more